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We obtain the first return map of the periodic Lorentz gas treated as a Sinai’s billiard. By using this
map we compute numerically the largest Lyapunov exponent and the velocity autocorrelation function
for the triangular Lorentz gas in the high density regime.

PACS number(s): 05.20.—y, 05.45.+b, 47.52. +j

We consider a system of moving particles in the plane
outside a periodic set of disks of radius R centered at the
sites of a triangular lattice. The particles are elastically
reflected on the boundary of the disks. This is the tri-
angular periodic Lorentz gas [1,2], viewed here as a con-
crete example of a hyperbolic scattering billiard [3,4].
Billiard systems are Hamiltonian and preserve the Liou-
ville measure p [5,6].

Let ¢(z) and U(¢) be the position and velocity of the
particle at time ¢, with respect to a Cartesian frame at
rest. We choose a Cartesian frame located at a lattice
site, with an orthogonal basis (¢,,¢,), |€.|=1, [¢,|=V'3
so that the location of the scatterers is determined by a
pair (l,m)ELZ X 1Z.

The value of the radius R of the scatterers may change,
defining two different regimes of density. When
R <V'3/4 the path of the particle between two successive
collisions is unbounded, and we call this the low density
or the infinite horizon regime. When R > V'3 /4, the path
between successive collisions becomes bounded, and this
situation corresponds to the high density or finite horizon
regime. If R =1 the scatterers just touch, the particle is
trapped in a curved triangular domain, and we call this
the close packing configuration of the scatterers. If R > 1
the scatterers overlap and the particle is trapped in a
curved triangular domain, but the vertices do not touch
tangentially. The problem of the statistical behavior of
the evolution and the asymptotics of the velocity auto-
correlation function have been studied by several authors
[2,7-9].

We recall here that if the time intervals 7 between suc-
cessive collisions are uniformily bounded (finite horizon),
then the central limit theorem holds [1,4]. In the case of
a triangular periodic lattice the Wigner-Seitz hexagon is
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the quotient space R2/1Z X 1Z. If D is the interior of all
disks, the configuration space is Q =(R2—D)/%Z X1z
[1,10,11].

The sides of the hexagon are called transparent walls
[12], they are crossed at least twice, then play no role in
the dynamics, and their length determines the normaliza-
tion factor of the invariant measure. As the velocity of
the particle is a constant of motion, here taken equal to 1,
the phase space of the system is the unit tangent bundle
over Q,

r'={y=(q,9,,0)/(q,,9,)€Q,0€[0,27]} . (1

We denote by S,, t E(— «, » ), the flow generated by the
dynamics on I".

Billiards systems are studied in terms of their global
section [6], which is the set 3" of all phase points “‘just
after collision.” The set 8" is a union of closed two-
dimensional Riemannian manifolds, usually parametrized
in terms of the Birkhoff coordinates (r,¢) [5,11] r being
the arclength along dQ and ¢ the angle between the in-
coming velocity and the local oriented tangent at the col-
lision point g (r).

As the transparent walls play no role in the
configuration space, the global section can be restricted
to

art={x=(r,¢)/r€[0,27R],6 E[0,7]}
=[0,27R]1X[0,7] . (2)

ar'™" is a cylindric surface with a metric dr?+d$2. When
the flying time 7(x) is bounded (i.e., the horizon is finite),
ar't is a global section of the phase flow S, because al-
most all trajectories return to 3"t after crossing art,
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FIG. 1. Sectors that define the transfer rule.
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The first return map T takes each point (7,¢) of the
global section to the point of the next crossing. The
singularities of the first return map are the points 8T T,
which are tangent to the scatterers
(Im)(I,m)E(LZX1Z) and the preimages of tangent
collisions. These points are depicted in Fig. 1.

The components ¢, ,, (x) of the set T-1(3(ar)) are

determined by elementary geometry to be
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The singular curves are depicted in Fig. 2. The singular
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FIG. 2. Singular set determined by the functions ¢,,,1,,,,2.

curves presented in Fig. 2 agree with the qualitative dis-
cussion of the singularities provided by Sinai [3].

The first return map is a diffeomorphism of the set
ar' " —S, S being the set of singularities, and preserves
the measure dv=c, singdrd¢ [5,11,13], where c, is a
normalization constant. Since the dynamics is complete-
ly deterministic, any point (g,,q,,0) of the phase space
T, (91,9,)E€Q, 0€[0,27], is completely determined by
the point (r,¢)E3T' " corresponding to its last collision,
and the time since that collision. This is the Ambrose-
Kakutani representation of the dynamical system
(T,S,,u) as the flow above the cascade T on the base
space M with the help of the generating function 7(x)
[6,13-15].

The expectation value of any observable f is

1
v(T)

()= [auf=—=[ avtng) [Pafran,  ©

where v(7)=(7) = f 7(r,¢)dv. The relation between
the variables 6, v, ¢ v?zl;s first found by Birkhoff [5] and
extended to the most general planar billiards by Katock
and Strelcyn [11]. The Strelcyn-Birkhoff implicit equa-
tion relates the above variables of the corresponding suc-
cessive collision points (r,¢) and (r{,¢)=T(r,¢), and is
given by

U

0= )

NYE

+L—¢=T+ 2 44, mod2m) . @

If the particle is located at the scatterer (/,m) at the
point (7,¢), then the particle will be found at the point
(ry,¢;) on the scatterer (/;,m ) with

<x]]]
i}
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The location of (I/,,m ;) of the target scatterer is deter-
mined from the singularity curves [3] (see Fig. 2) as fol-
lows:

(I,mp))=U+L,m+1L) if $€[0,4,,,,,,(r], (10)
(U,m)=+3m+if $€[d1/21,2(r),¢3,21(1] ,
(1
(ym)=+1,m) if $€[ds,,1,(Fd1o(F)] (12)
(Iy,m)=(U+3m _%)if PE[d1o(r)d30—10(r)], (13)
(Iy,m)=U+L,m—L0if ¢€[d3,, _1(r),7] . (14)

The hexagonal symmetry allows the reduction of the
phase space to [0,7R /6]X[0,].

The formulas (8) and (9) that give the first return map
T are derived from the solution of the implicit Eq. (7).
We derive this formula relating the parametric represen-
tation of the bounder of the scatterer with the velocity
angle, which is constant between two successive col-
lisions. The first return map T allows, for example, the
computation of the velocity autocorrelation function and
the Kolmogorov-Sinai (KS) entropy of the triangular
Lorentz gas in the high density regime V'3/4<R <.

VELOCITY AUTOCORRELATION
The velocity autocorrelation function of the flow S, is

C(o= [ duv(s,(ng,D)(r,$,D) . (15)

As the velocity U'is constant between successive collisions
we have

v(r,¢,1)=v(r,¢) for 0<I<7(r,d). (16)
Therefore,

(S, (r,¢,D))0(r,,1)=0(T"(r,¢))o(r,¢) (17)
for
)+ - +HT" YU r¢)<t<r(r,¢)+ - -

+(T™r,¢9)) .

The velocity autocorrelation is therefore
_ . - r)
cw=[ _,dvi(T"(r,$)u(r¢) [""dl
= [ V(T $)(r $)r(r,d) . (18)
Due to mixing, for large times, t — «, we have
c(y=C(n){1),, (19)

where C(n)= [, +dvi(T"(r,$))0(r,¢) is the velocity
autocorrelation of the first return map.

The integral with respect to continuous time of the ve-
locity autocorrelation function is finite only in the high
density regime V'3/4 <R =1. If the angles between the
tangents at the break points are different from zero,
which excludes the close packing case R =1, C(n) has
been shown [1,4] to be bounded subexponentially:
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|C(n)| <Ke ", (20)
where K >0,1 <y <1 are constants and a depends upon
the shape of the configuration Q. In the case of the close
packing, for large time n, we have Machta’s [16] estima-
tion,

ic(m)=2, 21)
n

where A is a positive constant.

In order to verify the above estimation of C(n), we
computed the velocity autocorrelation function averaging
over trajectories between 10° and 10 iterations of T'(r,¢).
In the computation, time is represented by the sequence
of integers and corresponds to successive collisions. The
numerical errors of the values of C(n) are between 3%
and 8%.

We observed that the absolute value of C(n) is well
fitted by the subexponential (20) [1,4], except for the close
packing case (see Fig. 3). We found that the exponent y
does not depend significantly on R, being almost constant
¥ =0.71£0.02. This value was also found in [8]. There-
fore it seems plausible to conjecture that the value
¥~0.71 is universal for all bounded systems where the
diffusion occurs.

The parameter a varies with the radius R, and as the
parameter y is constant, the transport process is charac-
terized by the function a(R). A complete discussion
about the diffusion in the bounded Lorentz gas and the
behavior of the function a(R) will appear in a future
work [17].

In the close packing case we found that C(n) is better
fitted by the algebraic law (21) proposed by Machta, with
A =0.45+0.05, which agrees (within the numerical pre-
cision) with the numerical value obtained in [16].

ENTROPY-LYAPUNOV EXPONENT

Katock and Strelcyn have shown [11] that the presence
of singularities does not prevent the application of Pesin’s

formula. Therefore, for our system the Kolmogorov-
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FIG. 3. Discrete velocity autocorrelation function for

R =0.45 showing subexponential behavior.
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Sinai entropy A (T) is equal to the largest Lyapunov ex-
ponent A. The dependence of the Lyapunov exponent of
the first return map on the radius R is known only for
sufficient small R (low density)

AMR)=—2In(R)+0O(1), (22)
with
O(R") .
R"™ R—0

This formula was derived analytically by Chernov [12]
without any knowledge of the first return map 7, follow-
ing previous numerical calculations [8].

We investigated the dependence of the Lyapunov ex-
ponent A in the region V'3/4<R <0.52, which corre-
sponds to the high density regime of the system. For
R >0.52 the numerical values of the Lyapunov exponent
do not converge very well due to the small values of the
curvature of the scatterers, which introduces undesirable
numerical stable periodic orbits inducing unavoidable nu-
merical errors.

As Chernov’s estimation is limited to the low density
regime, we use the formulas (8) and (9) for the first return
map in order to compute the largest Lyapunov exponent
in the high density regime. We apply the algorithm
developed in [18,19] for the computation of the
Lyapunov exponent, which is well adapted for the
present formulation of the problem. Clearly, due to the
ergodicity, we have observed the same values for A for
v—almost all (r,¢)EM.

The values of A converge very well, and the numerical
errors are less than 0.5%. The dependence of A versions
on InR is plotted in Fig. 4. The continuous part results
from our numerical calculations and the dashed part cor-
responds to our conjecture about the behavior of A in the
whole domain 0 <R <(V'3/3), based upon Chernov’s re-
sult for the limit R —0 and upon the fact that A=0 for
R =V'3/3 where the trapping region defined after close
packing collapses.

Our computation shows therefore that in the regime
V'3/4<R <0.472,

A=—2InR —1. (23)

Chernov’s formula (22) is therefore still valid in this
part of the high density regime. For R =0.472, however,
Chernov’s formula is not valid because A decreases more
rapidly until its minimum value A=0.32 at the close
packing point R = 1.

Let us also remark that within the accuracy of our nu-
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FIG. 4. Largest Lyapunov exponent. The full line corre-
sponds to our numerical results, and the dashed line corre-
sponds to extrapolated behavior.

merical calculations we have
V73

M

=1—AM(1), A(0.472)=0.5. (24)

The value R =0.472 marks the end of the validity of
Chernov’s formula. This point looks like a critical point
if the quantity d?A./d*( InR) is considered as an order pa-
rameter.

Concluding, using the first return map (8) and (9), we
confirmed the estimations (20) and (21) for the behavior
of the velocity autocorrelation function, and we conjec-
ture that the parameter ¥ =0.71 in (20) is a universal pa-
rameter for bounded billiards where diffusion occurs.
Moreover we have computed the dependence of the
Lyapunov exponent with respect to the radius R in the
high density regime. We found that Chernov’s formula is
valid for R $0.472. For R R 0.472 we have a more deli-
cate behavior, which we leave for a future study [20].

ACKNOWLEDGMENTS

We would like to thank Professor I. Prigogine, Profes-
sor G. Nicolis, and Professor S. Tasaki for many helpful
discussions. We also acknowledge the financial support
of the Solvay Institutes, the Brazilian Agency CAPES,
and the Commission of the European Communities DG
111, Contract No. ECRUOQ02.

[1]L. A. Bunimovitch and Ya. G. Sinai, Commun. Math.
Phys. 78, 479 (1981).

[2]J. Machta and R. Zwanzig, Phys. Rev. Lett. 50, 1959
(1983).

[3] Ya. G. Sinai, Russ. Math. Survey 25, 137 (1970).

[4] L. A. Bunimovitch, Ya. G. Sinai, and N. I. Chernov, Russ.
Math. Survey 46, 47 (1991).

[5] G. D. Birkhoff, Dynamical Systems (American Mathemat-

ical Society, Providence, RI, 1927).

[6]1. P. Kornfeld, Ya. G. Sinai, and V. S. Formin, Ergodic
Theory (Springer Verlag, Berlin, 1982).

[7] B. Friedmann, Y. Ono, and J. Kubo, Phys. Rev. Lett. 52,
709 (1984).

[8]J. P. Bouchaud and P. le Doussal, J. Stat. Phys. 41, 225
(1985).

[9] P. Gaspard and G. Nicolis, Phys. Rev. Lett. 65, 1693



3956 A. HAKMI, F. BOSCO, AND 1. ANTONIOU 31

(1990).

[10] L. A. Bunimovitch, Ya. G. Sinai, and N. I. Chernov, Russ.
Math. Survey, 45, 97 (1990).

[11] A. Katock and J. M. Strelcyn, in Invariant Manifolds, En-
tropy and Billiards: Smooth Maps with Singularities, edit-
ed by A. Dold and B. Eckmann, Lecture Notes in
Mathematics Vol. 1222 (Springer-Verlag, Berlin, 1986).

[12] N. I. Chernov, Func. Anal. Appl. 25, 204 (1991).

[13] A. Hakmi, F. Bosco, and I. Antoniou (unpublished).

[14] W. Ambrose, Ann. Math. Stat. 42, 723 (1941).

[15] W. Ambrose and S. Kakutani, Duke Math. J. 9, 25 (1942).

[16] J. Machta, J. Stat. Phys. 32, 555 (1983).

[17] A. Hakmi, F. Bosco, and I. Antoniou (unpublished).

[18] G. Benettin and J. M. Strelcyn, Phys. Rev. A 17, 773
(1978).

[19] G. Benettin, L. Galgani, and J. M. Strelcyn, Phys. Rev. A
14, 2338 (1976).

[20] S. Tasaki, A. Hakmi, and I. Antoniou (unpublished).



